133 research outputs found

    On design principles and calculation methods related to energy performance of buildings in Finland

    Get PDF
    The EU has set the energy performance directive for buildings (2002/91/EC) in order to decrease CO2 emissions by increasing the energy performance of buildings. This directive states that the energy efficiency of buildings has to be calculated in the member states. The main objective of this thesis is to support the implementation process of this directive in Finland. This thesis focuses on the adaptation and development of simplified calculation methods related to the energy performance of buildings and on the development of design principles in order to improve the energy performance of buildings. The energy performance of buildings depends on several factors that are related to building fabric, HVAC systems, indoor and outdoor climate and behaviour of occupants. In this thesis, the studied factors are balanced ventilation system, electrically heated windows, thermal inertia of building structures and infiltration of building envelope. The effect of these factors on energy performance of buildings was studied mostly using a dynamic simulation tool IDA-ICE. In order to calculate the energy efficiency of buildings, calculation methods are needed that are sufficiently applicable and accurate. The monthly utilisation factor heat demand calculation method EN ISO 13790 can be calibrated for Finland regarding the effect of thermal inertia of building structures. The calibrated monthly method can be used for residential buildings, but should not be used for office buildings in Finland. Therefore, more-detailed dynamic methods should be used in the calculation of the energy performance of office buildings. Infiltration rate depends on several factors and calculation methods that are not able to take these factors into account explicitly should be adapted at a national level. The simple adapted infiltration model that was developed in this study, can be used to approximate the average infiltration rate of detached houses in Finland. But, dynamic building simulation with a multizone infiltration modelling is a reasonable choice for detailed infiltration and energy performance analyses

    The risk of overheating and energy demand of new and old Finnish apartment buildings in the cooling season

    Get PDF
    This study has compared the risk of overheating of a new and old apartment building in Finland and aimed to improve the indoor temperature conditions of the new apartment building using the passive strategies (sun shading, window opening, and window properties) and an active cooling system. So that seven different cases were defined and simulated. Regarding the results, the risk of overheating in the old building is significantly less than in the new building, and using new well-insulated windows with the same old wall construction in the old building, decreases the heating demand but has no significant effect on indoor air temperature. So that the windows are more important for energy usage but not for the indoor air temperature in the old Finnish apartment building during the summer period. Using openable windows would be the best passive solution for keeping the indoor air temperature of the spaces of the new building within the comfort limits with less than 10% of the time above the recommended temperature limits based on EN 16789-1 standard without any significant increase in heating demand. While Using an active cooling system in the living room of each apartment is the only solution that can provide thermal comfort for 100% of the cooling season in all the spaces including bedrooms.publishedVersio

    Emission reduction potential of different types of Finnish buildings through energy retrofits

    Get PDF
    Energy retrofitting of buildings shows great potential in reducing CO2 emissions. However, most retrofitting studies only focus on a single building type. This paper shows the relative potential in six Finnish building types, to identify possible focus areas for future retrofits in Finland. Data from previous optimization studies was used to provide optimal cases for comparison. Energy demand of the buildings was generated through dynamic simulation with the IDA-ICE software. The cases were compared according to emissions reduction, investment and life cycle cost. It was found that, in all buildings, it was possible to reduce emissions cost-neutrally by 20% to 70% in buildings with district heating and by 70% to 95% using heat pumps. Single-family homes with oil or wood boilers switching to heat pumps had the greatest emission reduction potential. More stringent requirements for energy efficiency could be mandated during building renovation

    Rakennusten energialaskennan testivuosi 2012 ja arviot ilmastonmuutoksen vaikutuksista

    Get PDF
    Tiivistelmä Ilmaston lämpeneminen vaikuttaa rakennusten lämmitys- ja jäähdytysenergian tarpeeseen. Tässä tutkimuksessa muodostettiin rakennusten energialaskennassa Suomessa käytettävät uudet sääaineistot, tuotettiin ilmastoskenaarioiden avulla rakennusten energialaskelmiin soveltuvat tulevaisuuden sääaineistot ja arvioitiin rakennusten energiankulutusta vuoden 2030 muuttuneessa ilmastossa Rakennusten energialaskentaa varten kehitetty uusi testivuosi (TRY2012) korvaa aiemmin käytetyn testivuoden 1979. Uuden testivuoden tunnittaiset sääaineistot energialaskennan vyöhykkeillä I–II, III ja IV muodostettiin Vantaalla, Jyväskylässä ja Sodankylässä vuosina 1980–2009 tehtyjen säähavaintojen perusteella. Testivuoden kunkin kalenterikuukauden sääaineistot valittiin sellaiselta vuodelta, jonka aikana kyseisen kuukauden sääolot olivat mahdollisimman lähellä ilmastollista keskimääräistilaa. Käytännössä kalenterikuukausien valinta tehtiin tilastollisella menetelmällä tarkastellen lämpötilaa, kosteutta, auringon säteilyä ja tuulen nopeutta. Näitä neljää säämuuttujaa painotettiin sen mukaan, kuinka paljon ne vaikuttavat Suomessa rakennusten lämmitys- ja jäähdytystarpeeseen. Tyypilliselle uudispientalolle ja toimistorakennukselle tehdyt simuloinnit osoittivat, että lämmitys- ja jäähdytystarpeen kannalta tärkein säämuuttuja on ulkoilman lämpötila, mutta kesällä auringon säteilyn vaikutus on suunnilleen yhtä suuri. Tutkimuksessa arvioitiin myös ilmastonmuutoksen vaikutuksia. Ilmastomallien tulosten pohjalta laadittiin tilastollisilta ominaisuuksiltaan vuosien 2030, 2050 ja 2100 arvioitua ilmastoa vastaavat tulevaisuuden testivuosien sääaineistot. Vuoden 2030 tienoilla vuoden keskilämpötilan arvioidaan olevan paikkakunnasta riippuen 1,2–1,5 astetta korkeampi kuin TRY2012:n perusteella. Talvella keskilämpötila nousee noin kaksi astetta ja kesällä vajaan asteen. Lämpötilan vaihtelevuus pienenee talvipuolella vuotta noin 10 %. Auringon säteilyn väheneminen talvella ja keväällä, tuulen vähäinen voimistuminen marrashelmikuussa ja ilman suhteellisen kosteuden pieni kasvu loka–huhtikuussa otettiin myös huomioon tulevaisuuden testivuosia laadittaessa. Lopuksi arvioitiin ilmastonmuutoksen vaikutuksia rakennusten energiantarpeeseen nykyisiä rakentamismääräyksiä noudatettaessa. Laskelmissa esimerkkinä käytetyn pientalon tilojen ja ilmanvaihdon lämmitystarve vähenee vuoteen 2030 mennessä noin 10 % ja jäähdytystarve kasvaa 17–19%. Toimistotalon lämmitystarve on vastaavasti 13% pienempi ja jäähdytystarve 13-15 % suurempi kuin nykyisessä ilmastossa. Kaikkiaan rakennusten kokonaisostoenergiankulutus vähenee vuoteen 2030 mennessä 4–7 % ilmaston muuttumisen takia.Abstract: The ongoing climate change is expected to affect the energy demand for heating and cooling of buildings. Building energy consumption is often assessed by simulation algorithms that require hourly meteorological data. For this purpose, weather observations from the year 1979 have previously been used in Finland as a reference. Here, we describe a new test reference year, TRY2012, that was constructed by using weather observations at three measurement stations (Vantaa, Jyväskylä and Sodankylä) during 1980–2009. TRY2012 consists of weather data for twelve months that originate from different calendar years, each month having weather conditions close to the long-term climatological average. The months for TRY2012 were selected using Finkelstein-Schafer parameters for four climatic variables (air temperature, humidity, solar radiation and wind speed); these parameters were weighted depending on how important individual climatic variables are for the building energy consumption in Finland. Calculations for two example buildings, a detached house and an office building, indicate that the most influential climatic variable for annual energy demand is air temperature. In summer, solar radiation and air temperature are of broadly equal influence. We also assessed the influence of human-induced climate change on typical weather conditions for the years 2030, 2050 and 2100. Multi-model mean estimates from 7 to 19 global climate models, together with the TRY2012 weather data, were used to construct artificial meteorological data for the future. The projected reference year TRY2030 is 1.2–1.5ºC warmer than TRY2012, with the lower end of the range corresponding to Vantaa in southern Finland and the higher value to Sodankylä in the north. Seasonal mean temperature is projected to increase by about two degrees in winter and by slightly less than one degree in summer. The variability in temperature will diminish in the winter half of the year by about 10 %. In addition, the projections include decreases in solar radiation in winter and spring, slight increases in wind speed in November-February, and small rises in relative air humidity in all seasons except summer. Utilizing the reference years TRY2012 and TRY2030, we calculated the mean monthly and annual energy consumption for the two example buildings in the current and projected future climate. Based on the simulations, the heat energy consumption of spaces and ventilation will decrease by 10% for the detached house and by 10–13% for the office building, whereas space cooling electricity will increase by 17–19% for the detached house and by 13–15% for the office building. Because electricity for cooling relative to the total delivered energy is minor, the total energy consumption of the example buildings is projected to decrease by 4–7% by 2030

    Cost-Effective Heating Control Approaches by Demand Response and Peak Demand Limiting in an Educational Office Building with District Heating

    Get PDF
    This study examined three different approaches to reduce the heating cost while maintaining indoor thermal comfort at acceptable levels in an educational office building, including decentralized (DDRC) and centralized demand response control (CDRR) and limiting peak demand. The results showed that although all these approaches did not affect the indoor air temperature significantly, the DDRC method could adjust the heating set point to between 20–24.5 °C. The DDRC approach reached heating cost savings of up to 5% while controlling space heating temperature without sacrificing the thermal comfort. The CDRC of space heating had limited potential in heating cost savings (1.5%), while the indoor air temperature was in the acceptable range. Both the DDRC and CDRC alternatives can keep the thermal comfort at good levels during the occupied time. Depending on the district heating provider, applying peak demand limiting of 35% can not only achieve 13.6% maximum total annual district heating cost saving but also maintain the thermal comfort level, while applying that of 43% can further save 16.9% of the cost, but with sacrificing a little thermal comfort. This study shows that demand response on heating energy only benefited from the decentralized control alternative, and the district heating-based peak demand limiting has significant potential for saving heating costs

    Emissions and power demand in optimal energy retrofit scenarios of the Finnish building stock by 2050

    Get PDF
    Highlights • Optimized energy retrofits reduced energy consumption of building archetypes. • Four retrofitting scenarios for Finnish building stock by 2050 were analyzed. • District heating demand was reduced by 25–63 % compared to business-as-usual by 2050. • Electricity demand did not rise despite increased heat pump deployment. • CO2 emissions in the retrofit scenarios were reduced by 50–75 % by 2050.Finland and the European Union aim to reduce CO2 emissions by 80–100 % before 2050. This requires drastic changes in all emissions-generating sectors. In the building sector, all new buildings are required to be nearly zero energy buildings. However, 79 % of buildings in Finland were built before 2000, meaning that they lack heat recovery and suffer from badly insulated facades. This study presents four large-scale building energy retrofit scenarios, showing the emission reduction potential in the whole Finnish building stock. Six basic building types with several age categories and heating systems were used to model the energy demand in the building stock. Retrofitted building configurations were chosen using simulation-based multi-objective optimisation and combined according to a novel building stock model. After large-scale building retrofits, the national district heating demand was reduced by 25–63 % compared to the business as usual development scenario. Despite a large increase in the number of heat pumps in the system, retrofits in buildings with direct electric heating can prevent the rise of national electricity consumption. CO2 emissions in the different scenarios were reduced by 50–75 % by 2050 using current emissions factors

    Rakennusten kosteusvauriot ja ylilämpeneminen muuttuvassa ilmastossa – RAIL

    Get PDF
    Tutkimuksessa tehtiin laskennallisia tarkasteluja ulkoseinärakenteiden rakennusfysikaalisesta toimivuudesta nykyisessä ja projisoiduissa tulevaisuuden ilmastoskenaarioissa. Lisäksi laskennallisella mallinnuksella tarkasteltiin ilmastonmuutoksen vaikutuksia rakennusten ylilämpenemiseen ja lämpöviihtyvyyteen. Rakennusten kosteusvaurioiden ja niihin liittyvien mikrobien yhteyttä ihmisten terveyteen tarkasteltiin kahdella systemaattisella katsauksella. Korkeiden kesäajan lämpötilojen vaikutusta terveyteen nyt ja tulevaisuudessa arvioitiin epidemiologisin sekä vaikutusarvioinnin menetelmiin. Tehtyjen tarkastelujen perusteella suurin osa Suomessa yleisesti käytössä olevista ulkoseinä­rakenteista pärjää myös muuttuvassa ilmastossa. Homehtumisriski nousee sellaisissa ulkoseinärakenteissa, jotka päästävät viistosadetta lävitseen, pidättävät vettä rakenteen huokosverkostossa (tiili, läpäisevä betoni) ja tuuletus on heikkoa. Palvelutalojen sekä asuntojen laskennalliset ja havaitut lämpötilat nousevat korkeiksi jo nykyisessä ilmastossa. Pelkät auringonsuojausratkaisut eivät ole riittäviä pitämään huone­lämpötiloja riittävän alhaisella tasolla, vaan sen lisäksi tarvitaan myös aktiivista jäähdytystä erityisesti helleaaltojen aikana. Jäähdytys tulisi kohdistaa rakennuksiin, joissa asuu ikäihmisiä, sillä heillä terveysriskit ovat suurimmat. Ilman lisätoimia tulevat korkeiden lämpötilojen terveyshaitat huomattavasti lisääntymään Suomessa jo lähitulevaisuudessa väestön ikääntyessä.Tämä julkaisu on toteutettu osana valtioneuvoston selvitys- ja tutkimussuunnitelman toimeenpanoa. (tietokayttoon.fi) Julkaisun sisällöstä vastaavat tiedon tuottajat, eikä tekstisisältö välttämättä edusta valtioneuvoston näkemystä

    Ilmanvaihto- ja jäähdytysjärjestelmien resilienssi lämpöaaltojen ja hengitystieinfektioiden suhteen : Uudis- ja korjausrakennusten teknisten ratkaisujen toiminta muuttuvissa olosuhteissa

    Get PDF
    Tutkimuksessa tehtiin laskennallisia tarkasteluja helleaaltojen vaikutuksista sisälämpötilaan sekä kenttämittauksia ja virtaussimulointeja ilmanvaihdon mitoituksen merkityksestä hengitystieinfektioiden torjunnassa. Lisäksi arvioitiin korkeiden lämpötilojen terveyshaittoja sekä influenssaviruksen terveysvaikutuksien ja koronapandemian merkitystä Suomen ylikuolleisuuteen. Passiivisilla auringonsuojaratkaisuilla ja ilmanvaihdon tehostuksella voidaan vähentää rakennusten ylilämpenemistä, mutta ne eivät yksistään riitä torjumaan sitä. Helleaalloista aiheutuu Suomessa vuosittain keskimäärin noin 110 ennenaikaista kuolemaa ja 170 sairaalahoitojaksoa, ja tulevaisuudessa haitat voivat moninkertaistua. Asuntojen ylilämpenemisen torjuntatoimien avulla on mahdollista ehkäistä merkittävä osuus vakavista terveyshaitoista. Nykyiset ilmavirrat ovat opetustiloissa ja kuntosalissa riittäviä hengitysinfektioriskin hallintaan. Avotoimistossa noin 20 %:a pienempi henkilömäärä voidaan nähdä järkevänä ratkaisuna epidemiatilanteessa. Hengitystieinfektiot ovat yleisin lyhyiden työstä poissaolojen syy Suomessa ja ne aiheuttavat sekä työnantajille että yhteiskunnalle kustannuksia sairauspoissaoloina, lisääntyneinä terveydenhuollon menoina ja suurentuneena kuolleisuutena.Tämä julkaisu on toteutettu osana valtioneuvoston selvitys- ja tutkimussuunnitelman toimeenpanoa. (tietokayttoon.fi) Julkaisun sisällöstä vastaavat tiedon tuottajat, eikä tekstisisältö välttämättä edusta valtioneuvoston näkemystä

    Comprehensive development of nearly zero-energy municipal service buildings (COMBI). Tutkimushankkeen johdanto- ja yhteenvetoraportti.

    Get PDF
    Tässä COMBI-tutkimushankkeen johdanto- ja yhteenvetoraportissa esitetään vuosina 2015—2018 toteutetun tutkimushankkeen keskeiset suositukset ja johtopäätökset. Hankkeen tavoitteena on ollut parantaa julkisten palvelurakennusten, kuten koulujen, päiväkotien ja vanhainkotien energiatehokkuutta turvallisesti ja kustannustehokkaasti. Hankkeessa on tarkasteltu sekä uudis- että korjausrakentamista.Tutkittuja aihepiirejä on hankkeessa ollut suuri määrä. Arkkitehtuurin osalta on tarkasteltu palvelurakennusten arkkitehtisuunnittelun kehittämistä energiatehokkuuden ja tilasuunnittelun näkökulmista sekä ympäristöystävällisyyden ja kestävyyden huomioon ottamista arkkitehtisuunnittelussa. Rakenteiden osalta on tutkittu niiden lämpö- ja kosteusteknistä toimintaa ja määritetty kosteusteknisiä materiaaliominaisuuksia. Kenttätutkimuksissa on tarkasteltu sisäilman olosuhteita 24 palvelurakennuksessa Tampereen ja ympäristökuntien sekä Helsingin alueella. Myös palvelurakennusten laskennallista ja toteutunutta energiankulutusta on tutkittu Tampereen, Helsingin ja Oulun kohteista. Taloteknisten järjestelmien osalta on tarkasteltu niiden kustannusoptimaalisuutta, uusiutuvan energian etätuotantoa, taloautomaatiojärjestelmien toimintaa, aurinkosuojausta ja valaistusta. Rakennusprosessin osalta näkökulmina ovat olleet päätöksenteon prosessit, talotekniikan käytännön toteutus, rakennuksen toimivuuden varmistus sekä olosuhteiden ja energiankulutuksen seuranta. Lisäksi on kehitetty työkaluja rakennushankkeen taloudellisuustarkasteluihin.Tämän johdanto- ja yhteenvetoraportin liitteenä on hankkeen tulosten pohjalta koottu COMBI 8 suosituslista, jossa esitettyjen toimenpiteiden katsotaan laajasti edesauttavan julkisten palvelurakennusten toimivuutta ja energiatehokkuutta. Raportin liitteenä on myös 45 kpl lyhyitä tuloskortteja sekä niihin liittyvät esitysaineistot, joiden tarkoituksena on helpottaa hankkeessa kerätyn tiedon leviämistä. Hankkeen alkuperäisjulkaisut on listattu tämän raportin liitteenä olevassa julkaisuluettelossa.Keskeisenä johtopäätöksenä todetaan, että hyvä energiatehokkuus on ainoastaan yksi laadukkaan rakentamisen monista ominaisuuksista. Laadukas rakentaminen edellyttää kokonaisvaltaista ja oikeaaikaista asioiden tarkastelua sekä ehjän ketjun rakentamista suunnittelusta toteutukseen ja käyttöön. Tässä onnistumisen edellytyksenä ovat rakennushankkeessa ja sen jälkeen rakennuksen parissa toimivien henkilöiden hyvä ammattitaito ja yhteistyö sekä riittävät resurssit. COMBI-hankkeen tulosten tavoitteena on antaa eri osapuolille tietoa ja työkaluja turvallisen, taloudellisen ja energiatehokkaan lopputuloksen saavuttamiseksi

    Meri-insinööriopiskelijoiden työllisyys

    Get PDF
    Tässä opinnäytetyössä on tutkittu, miten meri-insinööriopiskelijat työllistyvät opintojen aikana sekä valmistumisen jälkeen, sekä mitkä asiat vaikuttavat opiskelijan työllistymiseen. Työssä selvitettiin, millaisia pätevyyskirjoja opiskelija tarvitsee työllistymiseen, mitä muita todistuksia meri-insinööriopiskelija tarvitsee ja millaisia pätevyyskirjoja opiskelijan on mahdollista koulutuksen aikana ansaita. Työssä otettiin myös selvää siitä, millainen työllisyystilanne suomalaisessa merenkulussa tällä hetkellä vallitsee. Työllisyys selvitettiin niin suomalaisen ulkomaan- kuin kotimaanliikenteen kannalta.The purpose of this thesis was to determine what kind of possibilities there is for a maritime engineering student to get a job while still studying and right after completion of studies. On this thesis, I also investigated what kind of certificates and other competencies maritime engineering student needs for working on vessels and what kind of certificates is it possible to earn during the studies. I also examined the employment situation in Finnish seafarers. The examination was made both in domestic and foreign traffic vessels
    corecore